Counting cycles in planar graphs

Ryan Martin

Iowa State University

Joint work with:

- Emily Heath, Iowa State University \bullet
- [Chris \(Cox\) Wells,](https://mathematicaster.org/) Auburn University

MathConnect 2024 King Fahd University of Petroleum & Minerals Dhahran, Kingdom of Saudi Arabia December 12, 2024

Euler's Formula

A graph drawn in the plane without crossing edges is a PLANE GRAPH.

Let G be a plane graph with

- $\bullet V = V(G)$, the set of vertices,
- \bullet $E = E(G)$, the set of edges,
- \bullet $F = F(G)$, the set of faces.

Theorem (Leonhard Euler, 1758)

For any connected plane graph, $|V| - |E| + |F| = 2$.

A graph with a plane graph drawing is a PLANAR GRAPH.

Euler's Formula

Theorem (Leonhard Euler, 1758)

For any connected plane graph, $|V| - |E| + |F| = 2$.

Lemma (Handshaking Lemma for plane graphs)

For every plane graph G,

$$
2|E| = \sum_{v \in V} \deg(v) = \sum_{f \in F} \deg(f).
$$

Corollary

For every plane graph G with $|V| \geq 3$,

$$
|E| \le 3|V| - 6
$$

$$
|E| \le 2|V| - 4,
$$

 $if G$ is bipartite.

Euler's Formula

Corollary

For every plane graph G with $|V| \geq 3$,

$$
|E| \le 3|V| - 6
$$

$$
|E| \le 2|V| - 4,
$$
 if

G is bipartite.

Theorem

If G is a graph, then G is planar iff

- G has no SUBDIVISION of K_5 or $K_{3,3}$; [Kuratowski, 1930]
- G has no minor of K_5 or $K_{3,3}$. [Wagner, 1937]

Hakimi-Schmeichel

Definition

Let $N_{\mathcal{D}}(n,H)$ denote the maximum number of copies of H in an n-vertex PLANAR graph.

Theorem

If $n \geq 3$, then

$$
N_{\mathcal{P}}(n, K_2)=3n-6.
$$

This is achieved by any planar triangulation. Tutte proved there are $\frac{n^{-7/2}}{64\sqrt{6\pi}}\left(\frac{256}{27}\right)^{n-2}$ planar triangulations.

Hakimi-Schmeichel

Theorem (Hakimi-Schmeichel, 1979)

If $n \geq 3$, then

$$
N_{\mathcal{P}}(n, C_3)=3n-8.
$$

Hakimi-Schmeichel

Theorem (Hakimi-Schmeichel, 1979)

If $n \geq 3$, then

$$
N_{\mathcal{P}}(n, C_4) = N_{\mathcal{P}}(n, K_{2,2}) = \frac{n^2 + 3n - 22}{2}.
$$

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 4/18

Alon-Caro

Theorem (Alon-Caro, 1984)

If $k \geq 3$ and $n \geq 4$, then

$$
N_{\mathcal{P}}(n, K_{1,k}) = 2 \cdot {n-1 \choose k} + (n-4) \cdot {4 \choose k} + 2 \cdot 3k.
$$

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 5/18

Alon-Caro

Theorem (Alon-Caro, 1984)

If $k > 3$ and $n > 4$, then

$$
N_{\mathcal{P}}(n, K_{2,k}) = \begin{cases} {n-2 \choose k}, & \text{if } k \ge 5 \text{ or if } k = 4 \text{ and } n \ne 6; \\ 3, & \text{if } k = 4 \text{ and } n = 6; \\ {n-2 \choose 3} + 3(n-4), & \text{if } k = 3 \text{ and } n \ne 6; \\ 12, & \text{if } k = 3 \text{ and } n = 6; \\ {n-2 \choose 2} + 4n - 14, & \text{if } k = 2. \end{cases}
$$

Alon-Caro

Theorem (Alon-Caro, 1984)

If $n \geq 4$, then

$$
N_{\mathcal{P}}(n, K_{2,k}) = {n-2 \choose k} + O(n^{k-1}).
$$

Five-cycles

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

$$
N_{\mathcal{P}}(n, C_5) = \begin{cases} 2n^2 - 10n + 12, & \text{if } n = 6 \text{ or } n \ge 8; \\ 41, & \text{if } n = 7; \\ 6, & \text{if } n = 5. \end{cases}
$$

$$
N_{\mathcal{P}}(n, P_4) = \begin{cases} 7n^2 - 32n + 27, & \text{if } n \ge 9 \text{ or } n = 5, 6; \\ 222, & \text{if } n = 8; \\ 147, & \text{if } n = 7; \\ 12, & \text{if } n = 4, \end{cases}
$$

$$
N_{\mathcal{P}}(n, P_k) = \Theta\left(n^{\lfloor (k-1)/2 \rfloor + 1}\right).
$$

Theorem (Huynh-Joret-Wood, 2022, generalized by C.-H. Liu, $2021+$)

For all H, there exists a ℓ such that $N_{\mathcal{P}}(n,H) = \Theta(n^{\ell}).$

If $n \geq 9$, then

$$
N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.
$$

$$
7n2 - 32n + 27
$$

= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)

If $n \geq 9$, then

$$
N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.
$$

$$
7n2 - 32n + 27
$$

= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)

If $n \geq 9$, then

$$
N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.
$$

$$
7n2 - 32n + 27
$$

= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

$$
n^3 + O(n^2) = (n-2)(n-3)(n-4) + O(n^2)
$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

Big idea of the proof:

Lemma

Let $n \geq k \geq 3$ and let G be a planar graph on n vertices such that $S \subseteq V(G)$, $|S| = k$. Then,

$$
\sum_{v \in S} \deg(v) \leq 2n + 6k - 16.
$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

Lemma

Let $n \geq k \geq 3$ and let G be a planar graph on n vertices such that $S \subseteq V(G)$, $|S| = k$. Then,

$$
\sum_{v\in S}\deg(v)\leq 2n+6k-16.
$$

Proof.

$$
\sum_{v \in S} \deg(v) = \sum_{v \in S} \deg_{G[S]}(v) + e(S, V - S) \leq 2(3k - 6) + (2n - 4).
$$

П

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

Lemma

Let $n \geq k \geq 3$ and let G be a planar graph on n vertices such that $S \subset V(G)$, $|S| = k$. Then,

$$
\sum_{v\in S}\deg(v)\leq 2n+6k-16.
$$

If the vertices of G are deg(v_1) $>$ deg(v_2) $> \cdots$ $>$ deg(v_n), then $\#P_5(G) \leq \sum$ i<j $\deg(\mathsf{v}_i)$ deg $(\mathsf{v}_i,\mathsf{v}_j)$ deg (v_j)

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

If the vertices of G are deg(v_1) \geq deg(v_2) $\geq \cdots \geq$ deg(v_n), then

$$
\#P_5(G) \leq \sum_{i < j} \deg(v_i) \deg(v_i, v_j) \deg(v_j) \\ \leq \sum_{i < j} \deg(v_i) \min\{\deg(v_i), \deg(v_j)\} \deg(v_j) \\ \leq \sum_{i < j} \deg(v_i) \left(\deg(v_j)\right)^2
$$

Theorem (Ghosh-Gy˝ori-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$
N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)
$$

The solution is $n^3 + O(n^2)$.

(Our proof requires $n \geq 11664$.)

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 9/18

Seven-paths and six-cycles

Theorem (Cox-M., 2022)

$$
N_{\mathcal{P}}(n, P_7) = \frac{4}{27}n^4 + O(n^{4-1/5})
$$

$$
N_{\mathcal{P}}(n, C_6) = \left(\frac{n}{3}\right)^3 + O(n^{3-1/5})
$$

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 10/18

Eight-cycles

Theorem (Cox-M., 2022)

$$
N_{\mathcal{P}}(n, C_8) = \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right)
$$

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 11/18

10- and 12-cycles

Theorem (Cox-M., 2023)

$$
N_{\mathcal{P}}(n, C_{10}) = \left(\frac{n}{5}\right)^5 + o(n^5)
$$

$$
N_{\mathcal{P}}(n, C_{12}) = \left(\frac{n}{6}\right)^6 + o(n^6).
$$

10- and 12-cycles

Theorem (Lv-Győri-He-Salia-Tompkins-Zhu, 2024)

$$
N_{\mathcal{P}}(n, C_{2k}) = \left(\frac{n}{k}\right)^k + o\left(n^k\right).
$$

Other results

Definition

Let H be a planar graph. $H\{k\}$ denotes the "planar blow-up of H by k". That is, replace each edge of H with a $K_{2,k}$.

Other results

Objective

- A "reduction lemma" that says $N_{\mathcal{P}}(n, H)$ is asymptotically maximized by
	- taking some graph G,
	- blowing up the edges by different amounts, and \bullet
	- putting a path inside each blowup.

Probability mass on a graph

Definition

Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass. That is, $\sum \left\{ \mu(e) : e \in {V \choose 2} \right\} = 1$.

Probability mass on a graph

Definition

Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass. That is, $\sum \left\{ \mu(e) : e \in {V \choose 2} \right\} = 1$.

• For a graph $G = (V, E)$, define

$$
\mu(G)=\prod_{e\in E}\mu(e).
$$

Definition

Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass. That is, $\sum \left\{ \mu(e) : e \in {V \choose 2} \right\} = 1$.

• For a graph $G = (V, E)$, define

$$
\mu(G)=\prod_{e\in E}\mu(e).
$$

• For a vertex $x \in V$, let

$$
\bar{\mu}(x) = \sum_{y \in V - \{x\}} \mu(xy).
$$

Definition

- Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass.
- For a graph $G = (V, E)$, define $\mu(G) = \prod_{e \in E} \mu(e)$.
- For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V \{x\}} \mu(xy)$.

Theorem (Even Cycle Reduction Lemma)

Let $m > 3$.

\n- •
$$
\beta(\mu; m) \stackrel{\text{def}}{=} \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) = \mathbb{P}(m \text{ edges form } C_m)
$$
\n- • $\beta(m) \stackrel{\text{def}}{=} \sup \left\{ \beta(\mu; m) : \text{supp } \mu \subset \binom{V}{2} \text{ for a finite } V \right\}$
\n- • $\mathsf{N}_{\mathcal{P}}(n, C_{2m}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$
\n

Definition

Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass.

- For a graph $G=(V,E)$, define $\mu(G)=\prod_{e\in E}\mu(e)$.
- For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V \{x\}} \mu(xy)$.

Theorem (Odd Path Reduction Lemma)

Let
$$
m \ge 2
$$
. Then $N_{\mathcal{P}}(n, P_{2m+1}) \le \rho(m) \cdot n^{m+1} + O(n^{m+4/5})$ where

$$
\rho(\mu; m) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{\mathsf{v} \in (\mathsf{V})_m} \bar{\mu}(\mathsf{x}_1) \left(\prod_{i=1}^{m-1} \mu(\mathsf{x}_i \mathsf{x}_{i+1}) \right) \bar{\mu}(\mathsf{x}_m)
$$

Notes about reduction lemmas

- Reduction lemmas are not structural, but counting lemmas.
- We can't guarantee that, e.g., μ isn't positive on a K_5 , non-planar.
- Karush-Kuhn-Tucker (Lagrange multipliers) used to compute ρ or β . \bullet

Notes about reduction lemmas

- Reduction lemmas are not structural, but counting lemmas.
- We can't guarantee that, e.g., μ isn't positive on a K_5 , non-planar.
- Karush-Kuhn-Tucker (Lagrange multipliers) used to compute ρ or β .

Examples for the cycle C_{2m}

If μ is an equal distribution on $E(K_m)$, then

$$
\sum_{C \in \mathsf{C}(\mathcal{K}_m)} \prod_{e \in E(C)} \mu(e) = \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m.
$$

If μ is an equal distribution on $E(C_m)$, then

$$
\sum_{C \in \mathsf{C}(\mathcal{K}_m)} \prod_{e \in E(C)} \mu(e) = \left(\frac{1}{m}\right)^m \qquad \geq \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m
$$

Examples for the cycle C_{2m}

If μ is an equal distribution on $E(K_m)$, then

$$
\sum_{C \in \mathsf{C}(\mathcal{K}_m)} \prod_{e \in E(C)} \mu(e) = \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m.
$$

If μ is an equal distribution on $E(C_m)$, then

$$
\sum_{C \in \mathsf{C}(\mathsf{K}_m)} \prod_{e \in \mathsf{E}(C)} \mu(e) = \left(\frac{1}{m}\right)^m \qquad \geq \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m
$$

The largest is
$$
\left(\frac{1}{m}\right)^m
$$
 for $m \ge 3$.
\n• $m = 3, 4, 5, 6$ [Cox-M.]
\n• $m \ge 7$ [Lv-Győri-He-Salia-Tomphins-Zhu].

Let V be vertex set and let $\mu: \binom{V}{2} \rightarrow [0,1]$ be a probability mass. For a graph $G = (V, E)$, define $\mu(G) = \prod_{e \in E} \mu(e)$. For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V - \{x\}} \mu(xy)$.

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m > 2$.

$$
\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)
$$

\n
$$
= 2m \cdot \mathbb{P}(m \text{ edges form } C_m) + \mathbb{P}(m \text{ edges form } P_{m+1})
$$

\n• $\beta(m) \stackrel{\text{def}}{=} \sup \{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \}$
\n• $\mathsf{N}_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m > 2$.

$$
\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)
$$

= $2m \cdot \mathbb{P}(m \text{ edges form } C_m) + \mathbb{P}(m \text{ edges form } P_{m+1})$
• $\beta(m) \stackrel{\text{def}}{=} \sup \{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \}$
• $\mathsf{N}_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

$$
\beta(m) = \frac{2}{m^{m-1}},
$$

$$
\beta(m) \le \frac{2.7}{m^{m-1}},
$$

$$
, \qquad \qquad \text{if } m \in \{3,4\};
$$

$$
, \qquad \qquad \text{if } m \geq 5.
$$

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m > 2$.

$$
\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)
$$

= 2m \cdot \mathbb{P}(m edges form C_m) + \mathbb{P}(m edges form P_{m+1})
• $\beta(m) \stackrel{\text{def}}{=} \sup \{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \}$
• $\mathsf{N}_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

$$
N_{\mathcal{P}}(n, C_{2m+1}) = 2m \cdot \left(\frac{n}{m}\right)^m + O\left(n^{m-1/5}\right), \quad \text{if } m \in \{3, 4\};
$$

$$
N_{\mathcal{P}}(n, C_{2m+1}) \le 2.7m \left(\frac{n}{m}\right)^m + O\left(n^{m-1/5}\right), \quad \text{if } m \ge 5.
$$

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

Theorem (Heath-M.-Wells, 2023+)

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 16/18

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

Theorem (Heath-M.-Wells, 2023+)

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

Ryan Martin (Iowa State U.) [Counting cycles in planar graphs](#page-0-0) Dec 12, 2024 16/18

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

$$
N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),
$$
 if $m = 4$.

Open Problems

Question

- What is $N_P(n, P_m)$ for $m = 9, 11, \ldots$? [Reduction lemma exists]
- What is $N_{\mathcal{P}}(n, C_m)$ for $m = 11, 13, \ldots$? [Reduction lemma exists] \bullet

• What is
$$
N_{\mathcal{P}}(n, P_m)
$$
 for $m = 6, 8, \ldots$?

 $[No$ reduction lemma yet $]$

Open Problems

Question

• What is $N_P(n, P_m)$ for $m = 9, 11, \ldots$? [Reduction lemma exists]

• What is
$$
N_{\mathcal{P}}(n, C_m)
$$
 for $m = 11, 13, \ldots$?

• What is $N_{\mathcal{P}}(n, P_m)$ for $m = 6, 8, \ldots$? [No reduction lemma yet]

[Reduction lemma exists]

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H).$
- \bullet Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Open Problems

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H).$
- \bullet Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Although a μ achieving the maximum often occurs, it doesn't have to.

Observation

- \bullet If H = $K_{1,m}$ then the maximum likelihood results from a sequence $\{\sigma_n\}$ of stars with each edge having probability $1/n$.
- \bullet If $H = m \times K_2$ then the maximum likelihood results from a sequence $\{\mu_n\}$ of matchings with each edge having probability $1/n$.

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H).$
- Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Remark

- Finding $\rho(\mu; m)$, which counts odd paths is not exactly this kind of maximum likelihood question.
- The odd cycle C_{2m+1} problem requires computing $2m \cdot \beta(\mu, C_m) + \beta(\mu, P_{m+1}).$

Thank you!