Counting cycles in planar graphs

Ryan Martin

Iowa State University

Joint work with:

- Emily Heath, Iowa State University
- Chris (Cox) Wells, Auburn University

MathConnect 2024 King Fahd University of Petroleum & Minerals Dhahran, Kingdom of Saudi Arabia December 12, 2024

A graph drawn in the plane without crossing edges is a PLANE GRAPH.

Let G be a plane graph with

- V = V(G), the set of vertices,
- E = E(G), the set of edges,
- F = F(G), the set of faces.

Theorem (Leonhard Euler, 1758)

For any connected plane graph, |V| - |E| + |F| = 2.

A graph with a plane graph drawing is a PLANAR GRAPH.

Theorem (Leonhard Euler, 1758)

For any connected plane graph, |V| - |E| + |F| = 2.

Lemma (Handshaking Lemma for plane graphs)

For every plane graph G,

$$2|E| = \sum_{v \in V} \deg(v) = \sum_{f \in F} \deg(f).$$

Corollary

For every plane graph G with $|V| \ge 3$,

$$|E| \leq 3|V| - 6$$

$$|E| \le 2|V| - 4,$$

if G is bipartite.

Corollary

For every plane graph G with $|V| \ge 3$,

$$|E| \le 3|V| - 6$$

$$|E| \le 2|V| - 4,$$

if G is bipartite.

$$|V| = 6, |E| = 9$$

Theorem

If G is a graph, then G is planar iff

- G has no SUBDIVISION of K₅ or K_{3,3}; [Kuratowski, 1930]
- G has no minor of K₅ or K_{3,3}. [Wagner, 1937]

Hakimi-Schmeichel

Definition

Let $N_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex PLANAR graph.

Theorem

If n > 3, then

$$N_{\mathcal{P}}(n, K_2) = 3n - 6.$$

This is achieved by any planar triangulation.

Tutte proved there are $\frac{n^{-7/2}}{64\sqrt{6\pi}} \left(\frac{256}{27}\right)^{n-2}$ planar triangulations.

Hakimi-Schmeichel

Theorem (Hakimi-Schmeichel, 1979)

If $n \ge 3$, then

$$N_{\mathcal{P}}(n,C_3)=3n-8.$$

Hakimi-Schmeichel

Theorem (Hakimi-Schmeichel, 1979)

If $n \ge 3$, then

$$N_{\mathcal{P}}(n,\,C_4) = N_{\mathcal{P}}(n,\,K_{2,2}) = \frac{n^2 + 3n - 22}{2}.$$

Alon-Caro

Theorem (Alon-Caro, 1984)

If $k \ge 3$ and $n \ge 4$, then

$$N_{\mathcal{P}}(n,K_{1,k}) = 2 \cdot \binom{n-1}{k} + (n-4) \cdot \binom{4}{k} + 2 \cdot 3k.$$

Alon-Caro

Theorem (Alon-Caro, 1984)

If $k \geq 3$ and $n \geq 4$, then

$$N_{\mathcal{P}}(n,K_{2,k}) = \begin{cases} \binom{n-2}{k}, & \text{if } k \geq 5 \text{ or if } k = 4 \text{ and } n \neq 6; \\ 3, & \text{if } k = 4 \text{ and } n = 6; \\ \binom{n-2}{3} + 3(n-4), & \text{if } k = 3 \text{ and } n \neq 6; \\ 12, & \text{if } k = 3 \text{ and } n = 6; \\ \binom{n-2}{2} + 4n - 14, & \text{if } k = 2. \end{cases}$$

Alon-Caro

Theorem (Alon-Caro, 1984)

If $n \geq 4$, then

$$N_{\mathcal{P}}(n, K_{2,k}) = \binom{n-2}{k} + O\left(n^{k-1}\right).$$

Five-cycles

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

$$N_{\mathcal{P}}(n, C_5) = \begin{cases} 2n^2 - 10n + 12, & \text{if } n = 6 \text{ or } n \ge 8; \\ 41, & \text{if } n = 7; \\ 6, & \text{if } n = 5. \end{cases}$$

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

$$N_{\mathcal{P}}(n, P_4) = \begin{cases} 7n^2 - 32n + 27, & \text{if } n \geq 9 \text{ or } n = 5, 6; \\ 222, & \text{if } n = 8; \\ 147, & \text{if } n = 7; \\ 12, & \text{if } n = 4, \end{cases}$$

$$N_{\mathcal{P}}(n, P_k) = \Theta\left(n^{\lfloor (k-1)/2 \rfloor + 1}\right).$$

Theorem (Huynh-Joret-Wood, 2022, generalized by C.-H. Liu, 2021+) \mid

For all H, there exists a ℓ such that $N_{\mathcal{P}}(n, H) = \Theta(n^{\ell})$.

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

If $n \ge 9$, then

$$N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.$$

$$7n^2 - 32n + 27$$

$$= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)$$

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

If $n \ge 9$, then

$$N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.$$

$$7n^2 - 32n + 27$$

$$= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)$$

Theorem (Győri-Paulos-Salia-Tompkins-Zamora, 2019)

If $n \ge 9$, then

$$N_{\mathcal{P}}(n, P_4) = 7n^2 - 32n + 27.$$

$$7n^2 - 32n + 27$$

$$= 2 \cdot 2 \cdot (n-3) \cdot (n-4) + 2 \cdot (n-2) \cdot (n-3) + 2 \cdot {n-2 \choose 2} + O(n)$$

Five-paths

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

Five-paths

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

$$n^3 + O(n^2) = (n-2)(n-3)(n-4) + O(n^2)$$

Five-paths

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O\left(n^2\right)$$

Big idea of the proof:

Lemma

Let $n \ge k \ge 3$ and let G be a planar graph on n vertices such that $S \subseteq V(G), |S| = k$. Then,

$$\sum_{v \in S} \deg(v) \le 2n + 6k - 16.$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

Lemma

Let $n \ge k \ge 3$ and let G be a planar graph on n vertices such that $S \subseteq V(G), |S| = k$. Then,

$$\sum_{v \in S} \deg(v) \le 2n + 6k - 16.$$

Proof.

$$\sum \deg(v) = \sum \deg_{G[S]}(v) + e(S, V - S) \le 2(3k - 6) + (2n - 4).$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

Lemma

Let $n \ge k \ge 3$ and let G be a planar graph on n vertices such that $S \subseteq V(G)$, |S| = k. Then,

$$\sum_{v \in S} \deg(v) \le 2n + 6k - 16.$$

If the vertices of G are $\deg(v_1) \ge \deg(v_2) \ge \cdots \ge \deg(v_n)$, then

$$\#P_5(G) \leq \sum_{i < j} \deg(v_i) \deg(v_i, v_j) \deg(v_j)$$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

If the vertices of G are $\deg(v_1) \geq \deg(v_2) \geq \cdots \geq \deg(v_n)$, then $\#P_5(G) \leq \sum_{i < j} \deg(v_i) \deg(v_i, v_j) \deg(v_j)$ $\leq \sum_{i < j} \deg(v_i) \min\{\deg(v_i), \deg(v_j)\} \deg(v_j)$ $\leq \sum_{i < j} \deg(v_i) (\deg(v_j))^2$

Theorem (Ghosh-Győri-M.-Paulos-Salia-Xiao-Zamora, 2021)

$$N_{\mathcal{P}}(n, P_5) = n^3 + O(n^2)$$

$$\begin{cases} \text{maximize} & \sum_{i < j} x_i x_j^2 \\ \text{subject to} & n \ge x_1 \ge x_2 \ge \cdots \ge x_n \ge 0. \\ & \sum_{i=1}^k x_i \le 2n + 6k - 16, \quad \forall k \ge 3 \\ & \sum_{i=1}^n x_i \le 6n - 12. \end{cases}$$

The solution is $n^3 + O(n^2)$.

(Our proof requires $n \ge 11664$.)

Seven-paths and six-cycles

Theorem (Cox-M., 2022)

$$N_{\mathcal{P}}(n, P_7) = \frac{4}{27}n^4 + O(n^{4-1/5})$$

$$N_{\mathcal{P}}(n, C_6) = \left(\frac{n}{3}\right)^3 + O\left(n^{3-1/5}\right)$$

Eight-cycles

Theorem (Cox-M., 2022)

$$N_{\mathcal{P}}(n,C_8) = \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right)$$

10- and 12-cycles

Theorem (Cox-M., 2023)

$$N_{\mathcal{P}}(n, C_{10}) = \left(\frac{n}{5}\right)^5 + o\left(n^5\right)$$

$$N_{\mathcal{P}}(n, C_{12}) = \left(\frac{n}{6}\right)^6 + o\left(n^6\right).$$

10- and 12-cycles

Theorem (Lv-Győri-He-Salia-Tompkins-Zhu, 2024)

$$N_{\mathcal{P}}(n, C_{2k}) = \left(\frac{n}{k}\right)^k + o\left(n^k\right).$$

Other results

Definition

Let H be a planar graph. $H\{k\}$ denotes the "planar blow-up of H by k". That is, replace each edge of H with a $K_{2,k}$.

Other results

Objective

A "reduction lemma" that says $N_{\mathcal{P}}(n, H)$ is asymptotically maximized by

- taking some graph G,
- blowing up the edges by different amounts, and
- putting a path inside each blowup.

Definition

• Let V be vertex set and let $\mu:\binom{V}{2}\to [0,1]$ be a probability mass. That is, $\sum \left\{\mu(e): e\in\binom{V}{2}\right\}=1$.

Definition

- Let V be vertex set and let $\mu:\binom{V}{2}\to [0,1]$ be a probability mass. That is, $\sum \left\{\mu(e): e\in\binom{V}{2}\right\}=1$.
- For a graph G = (V, E), define

$$\mu(G) = \prod_{e \in E} \mu(e).$$

Definition

- Let V be vertex set and let $\mu:\binom{V}{2} \to [0,1]$ be a probability mass. That is, $\sum \left\{\mu(e): e \in \binom{V}{2}\right\} = 1$.
- For a graph G = (V, E), define

$$\mu(G) = \prod_{e \in E} \mu(e).$$

• For a vertex $x \in V$, let

$$\bar{\mu}(x) = \sum_{y \in V - \{x\}} \mu(xy).$$

Definition

- Let V be vertex set and let $\mu:\binom{V}{2}\to [0,1]$ be a probability mass.
- For a graph G = (V, E), define $\mu(G) = \prod_{e \in E} \mu(e)$.
- For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V \{x\}} \mu(xy)$.

Theorem (Even Cycle Reduction Lemma)

Let m > 3.

- $\beta(\mu; m) \stackrel{\text{def}}{=} \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) = \mathbb{P}(m \text{ edges form } C_m)$
- ullet $eta(m) \stackrel{ ext{def}}{=} \sup \left\{ eta(\mu; m) : \operatorname{supp} \mu \subset inom{V}{2} \ ext{for a finite } V
 ight\}$
- $N_{\mathcal{P}}(n, C_{2m}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

Definition

- Let V be vertex set and let $\mu: \binom{V}{2} \to [0,1]$ be a probability mass.
- For a graph G = (V, E), define $\mu(G) = \prod_{e \in E} \mu(e)$.
- For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V \{x\}} \mu(xy)$.

Theorem (Odd Path Reduction Lemma)

Let $m \geq 2$. Then $N_{\mathcal{P}}(n, P_{2m+1}) \leq \rho(m) \cdot n^{m+1} + O\left(n^{m+4/5}\right)$ where

$$\rho(\mu; m) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{\mathbf{v} \in (V)_m} \bar{\mu}(\mathbf{x}_1) \left(\prod_{i=1}^{m-1} \mu\left(\mathbf{x}_i \mathbf{x}_{i+1}\right) \right) \bar{\mu}(\mathbf{x}_m)$$

Notes about reduction lemmas

- Reduction lemmas are not structural, but counting lemmas.
- We can't guarantee that, e.g., μ isn't positive on a K_5 , non-planar.
- Karush-Kuhn-Tucker (Lagrange multipliers) used to compute ρ or β .

Notes about reduction lemmas

- Reduction lemmas are not structural, but counting lemmas.
- We can't guarantee that, e.g., μ isn't positive on a K_5 , non-planar.
- Karush-Kuhn-Tucker (Lagrange multipliers) used to compute ρ or β .

Examples for the cycle C_{2m}

• If μ is an equal distribution on $E(K_m)$, then

$$\sum_{C\in C(K_m)}\prod_{e\in E(C)}\mu(e)=\frac{(m-1)!}{2}\left(\frac{1}{\binom{m}{2}}\right)^m.$$

• If μ is an equal distribution on $E(C_m)$, then

$$\sum_{C \in \mathsf{C}(K_m)} \prod_{e \in E(C)} \mu(e) = \left(\frac{1}{m}\right)^m \geq \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m$$

Notes about reduction lemmas

Examples for the cycle C_{2m}

• If μ is an equal distribution on $E(K_m)$, then

$$\sum_{C \in C(K_m)} \prod_{e \in E(C)} \mu(e) = \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m.$$

• If μ is an equal distribution on $E(C_m)$, then

$$\sum_{C \in \mathsf{C}(\mathsf{K}_m)} \prod_{e \in E(C)} \mu(e) = \left(\frac{1}{m}\right)^m \geq \frac{(m-1)!}{2} \left(\frac{1}{\binom{m}{2}}\right)^m$$

The largest is $\left(\frac{1}{m}\right)^m$ for $m \ge 3$.

- m = 3, 4, 5, 6 [Cox-M.]
- *m* ≥ 7 [Lv-Győri-He-Salia-Tompkins-Zhu].

- Let V be vertex set and let $\mu:\binom{V}{2}\to [0,1]$ be a probability mass.
- For a graph G = (V, E), define $\mu(G) = \prod_{e \in E} \mu(e)$.
- For a vertex $x \in V$, let $\bar{\mu}(x) = \sum_{y \in V \{x\}} \mu(xy)$.

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m \geq 2$.

$$\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)$$

$$= 2m \cdot \mathbb{P}(m \text{ edges form } C_m) + \mathbb{P}(m \text{ edges form } P_{m+1})$$

- $\beta(m) \stackrel{\text{def}}{=} \sup \left\{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \right\}$
- $N_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m \geq 2$.

$$\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)$$

$$= 2m \cdot \mathbb{P}(m \text{ edges form } C_m) + \mathbb{P}(m \text{ edges form } P_{m+1})$$

- $\beta(m) \stackrel{\text{def}}{=} \sup \left\{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \right\}$
- $N_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

$$\beta(m) = \frac{2}{m^{m-1}}, \qquad if \ m \in \{3, 4\};$$

$$\beta(m) \le \frac{2.7}{m^{m-1}}, \qquad if \ m \ge 5.$$

Theorem (Odd Cycle Reduction Lemma: Heath-M-Wells, 2023+)

Let $m \geq 2$.

$$\beta(\mu; m) \stackrel{\text{def}}{=} 2m \cdot \sum_{C \in C(K_V)} \prod_{e \in E(C)} \mu(e) + \sum_{P \in P(K_V)} \prod_{e \in E(P)} \mu(e)$$

$$= 2m \cdot \mathbb{P}(m \text{ edges form } C_m) + \mathbb{P}(m \text{ edges form } P_{m+1})$$

- $\beta(m) \stackrel{\text{def}}{=} \sup \left\{ \beta(\mu; m) : \text{supp } \mu \subset {V \choose 2} \text{ for a finite } V \right\}$
- $N_{\mathcal{P}}(n, C_{2m+1}) \leq \beta(m) \cdot n^m + O\left(n^{m-1/5}\right)$

$$N_{\mathcal{P}}(n, C_{2m+1}) = 2m \cdot \left(\frac{n}{m}\right)^m + O\left(n^{m-1/5}\right), \quad \text{if } m \in \{3, 4\};$$

$$N_{\mathcal{P}}(n, C_{2m+1}) \le 2.7m \left(\frac{n}{m}\right)^m + O\left(n^{m-1/5}\right), \quad \text{if } m \ge 5.$$

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

$$N_{\mathcal{P}}(n, C_9) = 2 \cdot 4 \cdot \left(\frac{n}{4}\right)^4 + O\left(n^{4-1/5}\right),$$
 if $m = 4$.

Question

- What is $N_{\mathcal{P}}(n, P_m)$ for $m = 9, 11, \dots$?
- What is $N_P(n, C_m)$ for m = 11, 13, ...?
- What is $N_{\mathcal{P}}(n, P_m)$ for m = 6, 8, ...?

- [Reduction lemma exists]
- [Reduction lemma exists]
- [No reduction lemma yet]

Question

- What is $N_{\mathcal{P}}(n, P_m)$ for m = 9, 11, ...? [Reduction lemma exists]
- What is $N_{\mathcal{P}}(n, C_m)$ for m = 11, 13, ...? [Reduction lemma exists]
- What is $N_{\mathcal{P}}(n, P_m)$ for $m = 6, 8, \dots$?

[No reduction lemma yet]

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H)$.
- Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H)$.
- Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Although a μ achieving the maximum often occurs, it doesn't have to.

Observation

- If $H = K_{1,m}$ then the maximum likelihood results from a sequence $\{\sigma_n\}$ of stars with each edge having probability 1/n.
- If $H = m \times K_2$ then the maximum likelihood results from a sequence $\{\mu_n\}$ of matchings with each edge having probability 1/n.

Question (General maximum likelihood)

Given a graph H on m edges.

- For a probability distribution μ on $\binom{V}{2}$, choose m edges and compute $\mathbb{P}(a \text{ copy of } H) = \beta(\mu, H)$.
- Find the supremum over all μ .

This is the MAXIMUM LIKELIHOOD question.

Remark

- Finding $\rho(\mu; m)$, which counts odd paths is not exactly this kind of maximum likelihood question.
- The odd cycle C_{2m+1} problem requires computing $2m \cdot \beta(\mu, C_m) + \beta(\mu, P_{m+1})$.

Thanks

Thank you!